🙏 MITSUBISHI MATERIALS

Copper & Copper Alloy Business

Products Information

Features

- Excellent balance of yield strength and electrical conductivity
- Equivalent or higher stress relaxation resistance to Corson alloy
 Excellent bending formability and blanking workability
 Reasonable cost-effectiveness
 Expensive metals such as tin and nickel are not contained
 5% lower specific gravity than pure copper
 Suitable substitute for phosphor bronze and Corson alloy
 Chemical composition

Chemical composition

Mg	Cu				
1.6	Rem.*				

* Including inevitable impurities and trace additive elements

Physical properties

Property	Representative Value			
Specific Gravity (293 K)	8.5			
Coefficient of Thermal Expansion (/K:293 \sim 573K)	18.2 × 10 ⁻⁶			
Thermal Conductivity (W/(m·K): 293 K)	174			
Electrical Conductivity (%IACS : 293 K)	43			
Modulus of Elasticity (kN / mm² : 293 K)	115			
Poisson's ratio (293 K)	0.35			

(mass%)

Mechanical properties

	Temper(L.D.)				Typical values(L.D./T.D.)				
	1/2H	н	EH	SH	1/2H t:0.64mm	H t:0.15mm	EH t:0.15mm	SH t:0.15mm	
Tensile Strength (N/mm ²)	485~585	530~630	575~675	620~720	543/565	593/645	625/695	677/780	
0.2% Yield Strength (N/mm ²)	_	_		_	507/512	543/592	585/647	636/735	
Elongation (%)	5Min.	4Min.	3Min.	3Min.	11/16	9/14	7/12	7/10	
Vickers Hardness [*] (HV)	(145~205)	(160~220)	(175~235)	(190~250)	178	193	203	219	

Positioning of Alloy

MSP5 CDA C18670

Products Information

>Stress relaxation resistance

Exposure temperature: 150°C

Sampling direction: T.D.

MSP5-EH

C52100-H

200

MAX251C-EH

400

Bending stress: 80% of 0.2% yield strength

Exposure time (hr)

600

800

<JCBA T309>

1000

Temper	Sampling direction	Bending radius (mm) R						D/+	
	(to the L.D.)	0.0	0.1	0.15	0.2	0.25	0.4	0.6	
H	0°: Good Way	\triangle	$ $ \triangle	\triangle	\triangle	\triangle	0	Ο	0.0
	90°: Bad Way			\triangle		\triangle		Δ	0.7
EH t:0.15mm	0°: Good Way	\triangle		\triangle	Δ	Δ	0	0	0.0
	90°: Bad Way			Δ	Δ	Δ		Δ	1.0

100 90

> 80 70

60 50

40

30

20

10

0

0

Criteria of evaluation:
^OGood(Acceptable),
^OMinor rough surface(Acceptable),
[△]Rough surface(Acceptable),
[△]Minor crack(Unacceptable),
[×]Major crack(Unacceptable)

Cross-sectional observation

Bendability

The cross section of automotive 0.50 terminal is shown on the right.

Due to its excellent bendability, MSP5 is suitable For small terminal used in automobile, consumer Products and other industrial fields.

Low specific gravity

The specific gravity of MSP5 is around 5% smaller Than that of pure copper and Corson alloy.

Comparing with the same weight, the length of MSP5 is 5% longer than pure copper, which makes It possible to produce more terminals accordingly.

AMITSUBISHI MATERIALS

Sales Div.,Copper & Copper Alloy Business Unit, Advanced Products Company Address: 3-2-3 Marunouchi, Chiyoda-ku, TOKYO 100-8117 Email: mb-copper@mmc.co.jp

URL:http://www.mitsubishi-copper.com/en/ Date: 15/09/2022

All rights reserved. The leaflet is subject to change without notice.